Alloy scattering of substitutional carbon in silicon: A first principles approach

M.P. Vaughan, F. Murphy-Armando and S. Fahy

Tyndall National Institute, Lee Maltings, Dyke Parade Cork, Ireland
• Substitutional carbon in silicon
• Scattering theory in a nutshell
• Density functional theory
• Supercells calculations
• Formulation of the method
• Results
• Strain compensation in SiGe/Si heterostructures
• Suppression of dopant diffusion during growth

What effect will substitutional carbon have on the mobility?

- Require knowledge of carrier scattering
Probability of transitions between states found from a transition matrix.

\[\langle \psi_{k'} | \Delta V | \psi_k \rangle \]

Scattering rate found from matrix element using Fermi’s Golden Rule.

\[\frac{1}{\tau(E)} = \frac{2\pi}{\hbar} \left| \langle \psi_{k'} | \Delta V | \psi_k \rangle \right|^2 D(E_{k'}) \]

(\(\tau(E)\) is the ‘relaxation time’ and \(D(E)\) is the density of final states)
Density functional theory

Ground state density (+ potential)

Self consistent field calculations

Single-particle solution

Post-processing of wavefunctions...

Band structure eigenvectors and eigenvalues
Supercells calculations - 64 atom example

Primitive cell Brillouin zone
(energy v wavevector)

Folded into supercell BZ

64 atom supercell
Supercells calculations - Brillouin zone folding

64 atom supercell BZ (black squares)

mapped into the primitive cell BZ (white lines)

showing example 64 atom reciprocal lattice vectors (red arrows).

Supercell can be used to represent scattering in the primitive BZ by a reciprocal lattice vector.
Replace an Si atom with a C atom

- Eigenvalues now perturbed
- New eigenstates considered as a mixture of the unperturbed states

Example: Γ point in a 64-atom supercell
Constructing a Bloch basis for the new Hamiltonian

- Construct perturbed Hamiltonian (with C atom) using a basis of primitive Bloch functions (for each reciprocal lattice vector)
- The off-diagonal elements then give the transition matrix elements (for non-zero momentum change)

$$\langle \psi_i | \Delta V | \psi_j \rangle \delta_{ij} = \langle \psi_i | H - H_0 | \psi_j \rangle \delta_{ij}$$

- **Important note:** because the zero of a pseudopotential is arbitrary, the diagonal matrix elements of H will include an unknown shift in energy between the C and Si potentials.
- **Matrix elements constructed from wavefunction coefficients and eigenvalues of primitive and perturbed systems**
- Non-diagonal elements do not involve primitive eigenvalues
- Details to be published...
• Intravalley
• Intervalley
 – f-type
 – g-type

\[\text{g and f-type intervalley scattering} \]
\[\text{[image from Phys. Rev. B, 78, 35202 (2008)]} \]
Ionic relaxation

- Ionic positions are relaxed to lowest energy configuration
- Scattering can be decomposed into two parts
 - Chemical part
 - Deformation potential part

\[
\mathbf{k}' = [0.35 \ 0 \ 0], \ \mathbf{k} = [0.85 \ 0 \ 0], \ \mathbf{q} = [0.5 \ 0 \ 0]
\]
(64 atom supercell)

Scattering matrix calculations for 64 atom cell with C atom and with pure Si with the same ionic positions for each step in the relaxation algorithm.
Some results

Si(127)C(1) Scattering along the Δ line from Δ minimum ($k_x = 0$)

Intravalley: 2.8 eV; g-type: 0.35 eV; f-type (not shown): 0.1 eV
Mobility in Si\(_{1-x}\)C\(_x\)

Note: solid and dashed lines are calculated alloy scattering limited mobilities (no other scattering processes)

• We can use DFT calculations as the basis for a model of carrier scattering
• The scattering matrix may be decomposed into two components due to chemical change and ionic relaxation
• For Si(1-x)C(x), intravalley scattering turns out to be the dominant process
• Scattering by substitutional C appears to be too weak to explain the observed degradation in mobility - conclude that this is due to interstitial defects
The first principles approach to alloy scattering:

This work is supported by the Science Foundation Ireland.