Fourier Transform NIR Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (FT-IBBCEAS) of HONO/DONO, HNO₃

R. Raghunandan*, S. Dinneef and A. A. Ruth*
Physics Department and Environmental Research Institute, University College Cork, Ireland
*raghunandan@ucc.ie, *a.ruth@ucc.ie

Motivation

a. Spectroscopy

<table>
<thead>
<tr>
<th>ν/cm⁻¹</th>
<th>HONO (cm⁻¹)</th>
<th>DONO (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis</td>
<td>trans</td>
<td>cis</td>
</tr>
<tr>
<td>ν₁</td>
<td>3426.1963(2)</td>
<td>3590.7704(1)</td>
</tr>
<tr>
<td>ν₂</td>
<td>1640.517(1)</td>
<td>1699.7602(1)</td>
</tr>
<tr>
<td>ν₃</td>
<td>1261</td>
<td>1263.2075(4)</td>
</tr>
<tr>
<td>ν₄</td>
<td>851.943(3)</td>
<td>790.171(3)</td>
</tr>
<tr>
<td>ν₅</td>
<td>621.224(2)</td>
<td>618</td>
</tr>
<tr>
<td>ν₆</td>
<td>469.7432(16)</td>
<td>543.8707(7)</td>
</tr>
</tbody>
</table>

High resolution Fourier transform spectra of DONO were first recorded by Halonen et al. [3], who analysed the ν₁, ν₂, ν₃ and ν₄ fundamental bands of tris DONO and the ν₅ fundamental of cis DONO. However, no absorption band of DONO has been measured full date in the NIR region. Detailed studies of the ν₁, fundamental band of tris and cis DONO [2] between 2530 and 3000 cm⁻¹ at 0.01 cm⁻¹ resolution showed that unlike the ν₁ band of HONO, no strong perturbations exist for either isomer of DONO.

b. Atmospheric chemistry

HONO is a precursor of the most important oxidising agent in the troposphere, the hydroxyl (OH) radical. In polluted urban areas, this in turn leads to the formation of green house gases like O₃ and CO₂. The hydrolysis of ONO₂ on heterogeneous surfaces is a well-known mechanism for formation of HONO, resulting in HNO₃, as a by-product. Simultaneous measurement of these species can thus help understand the production of the molecule and the reaction chemistry better.

Experimental Setup

FT-IBBCEAS [3, 4]

• Measures the Fourier transform of the transmitted light intensity through a stable optical cavity (length, d = 6.44 m) consisting of high reflectance mirrors
• All spectra were recorded at a resolution of 0.08 cm⁻¹ between 3500 and 8000 cm⁻¹
• NIR: Less spectral congestion, vibrational overtones’ detection
• The transmission signal strength is measured with and without the absorber present inside the cavity (T₀ and T(α), respectively). From the ratio of the wavelengths-dependent transmitted intensities, the reflectivity of the mirrors R(α) and the sample’s extinction coefficient ε(α) is calculated as

\[ε(α) = \frac{1}{d} \left(\frac{T_0}{T(α)} \right) - 1 \]

where \(N \) is the number of passes, \(p \) is the path length per pass, \(d \) is the cavity, and \(R(α) \) is the cavity reflectance.

The reflectivity is determined by filling the chamber with a known concentration of CO₂ (pressure P = 6 mbar), and estimating the extinction coefficient based on the absorption cross-section of the sample at a particular wavelength.

Results

Simultaneous detection of HNO₂/HONO/NO₂ in the NIR

• Several rotationally resolved overtone bands of HONO, HNO₃ and NO₂ were detected simultaneously across the NIR spectral range, demonstrating the potential of FT-IBBCEAS to detect multiple trace gases simultaneously through their known line positions.

• Estimated particle densities

\(n_{HNO₂} \approx 2.4\times10^{10} \text{ molecule cm}^{-3} \)
\(n_{HNO₃} \approx 2.7\times10^{10} \text{ molecule cm}^{-3} \)
\(n_{NO₂} \approx 1.6\times10^{10} \text{ molecule cm}^{-3} \)

The NIR spectra of DONO

Experimental (top) and simulated [5] (bottom) spectra at 300 K, 0.08 cm⁻¹ resolution, and the table of spectroscopic constants obtained from PCGopher fit.

References

Acknowledgement

This work has been supported by the Marie Curie FP7-PEOPLE-2011-IEF 7th Framework Fellowship Programme 2011 (ALMA-MATER FP7 – 302109).